1) Compute the Laplace Transform of the following functions.
a) $f(t)=3 t^{2}-2 t+7$

$$
F(s)=\frac{6}{s^{3}}-\frac{2}{s^{2}}+\frac{7}{s}
$$

b) $g(t)=e^{-3 t} \cos (4 t)$

$$
G(s)=\frac{s+3}{(s+3)^{2}+16}=\frac{s+3}{s^{2}+6 s+25}
$$

c) $h(t)=u(t-2) e^{9 t}$

$$
H(s)=e^{-2 s} \mathcal{L}\left\{e^{9(t+2)}\right\}(s)=e^{-2 s+18} \mathcal{L}\left\{e^{9 t}\right\}(s)=\frac{e^{-2(s-9)}}{s-9}
$$

2) Suppose that the Laplace Transform of a function f is

$$
F(s)=\frac{s}{s^{4}+3 s^{2}+1}
$$

Compute the Laplace Transform of $t f(t)$.

$$
\begin{aligned}
\mathcal{L}\{t f(t)\}(s) & =-\frac{d}{d s}[F(s)] \\
& =-\frac{d}{d s}\left[\frac{s}{s^{4}+3 s^{2}+1}\right] \\
& =\frac{3 s^{4}+3 s^{2}-1}{\left(s^{4}+3 s^{2}+1\right)^{2}}
\end{aligned}
$$

3) Solve the following initial value problem by finding the Laplace Transform of the solution and then taking the inverse transform.

$$
\begin{aligned}
x^{\prime \prime}+4 x & =1 \\
x(0) & =0 \\
x^{\prime}(0) & =2
\end{aligned}
$$

$$
\begin{aligned}
s^{2} X-2+4 X & =\frac{1}{s} \\
\left(s^{2}+4\right) X & =\frac{1}{s}+2 \\
X(s) & =\frac{1}{s\left(s^{2}+4\right)}+\frac{2}{s^{2}+4} \\
& =\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4}+\frac{2}{s^{2}+4} \\
x(t) & =\frac{1}{4}-\frac{1}{4} \cos (2 t)+\sin (2 t)
\end{aligned}
$$

